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Abstract

Tactile sensing is crucial for achieving human-level robotic capabilities in manipula-
tion tasks [52]. Vision-based tactile sensors (VBTSs) have emerged as a promising
solution, offering high spatial resolution and cost-effectiveness by sensing contact
through camera-captured deformation patterns of elastic gel pads [59, 35]. However,
these sensors’ complex physical characteristics and visual signal processing require-
ments present unique challenges for robotic applications. The lack of efficient and
accurate simulation tools for VBTSs has significantly limited the scale and scope of
tactile robotics research [49, 8, 48]. Here we present Taccel, a high-performance
simulation platform that integrates Incremental Potential Contact (IPC) and Affine
Body Dynamics (ABD) to model robots, tactile sensors, and objects with both
accuracy and unprecedented speed, achieving an 18-fold acceleration over real-
time across thousands of parallel environments. Unlike previous simulators that
operate at sub-real-time speeds with limited parallelization, Taccel provides
precise physics simulation and realistic tactile signals while supporting flexible
robot-sensor configurations through user-friendly APIs. Through extensive valida-
tion in object recognition, robotic grasping, and articulated object manipulation, we
demonstrate precise simulation and successful sim-to-real transfer. These capabili-
ties position Taccel as a powerful tool for scaling up tactile robotics research and
development. By enabling large-scale simulation and experimentation with tactile
sensing, Taccel accelerates the development of more capable robotic systems,
potentially transforming how robots interact with and understand their physical
environment.

1 Introduction

The ability to physically interact with the environment through touch is fundamental to robotic
manipulation [3, 13]. While vision provides global scene understanding, tactile sensing captures
crucial local contact information [55] essential for precise manipulation. Among various tactile
sensing technologies [61, 24, 36, 25], vision-based tactile sensors (VBTSs) such as GelSight [59] and
9DTact [35] have emerged as a central focus in tactile research. Their ability to provide high-resolution
tactile feedback through camera-captured deformation patterns of elastic gel pads, combined with
cost-effectiveness, has driven significant advances in robotics [63, 33, 44, 8, 62].

The primary challenge in scaling up VBTS-equipped robot simulation lies in accurately modeling
the hyperelastic soft gel pad and its contact [63, 12]. Current approaches follow two main directions:
rigid-body approximations [49, 54] and soft-body simulations [44, 8, 12, 20, 28, 63]. While rigid-
body methods efficiently support basic tasks like pick-and-place [1, 49], they cannot capture the
fine-grained contactsd and elastomer deformations essential for complex manipulation tasks [63, 12]
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Figure 1: Taccel demonstration of dexterous manipulation with tactile feedback. The simulation shows an
Allegro robotic hand equipped with four VBTSs performing a precision grasp on a mahjong tile. The sensor on
the thumb actively presses against the tile’s face, while other fingers maintain a stable grip. The left inset shows
the mahjong tile with its characteristic Chinese character marking. The right inset displays the tactile sensor’s
output as a depth map (green-yellow colormap, scale in millimeters), where brighter regions indicate deeper
deformation of the gel pad. This depth information precisely captures the geometric features of the tile’s surface,
demonstrating the simulator’s capability to generate realistic tactile feedback during complex manipulation tasks.

Table 1: Comprehensive comparison of FEM-based VBTS simulators. Soft Mat.: modeling of deformable
materials (FEM: Finite Element Methods). Stiff Mat.: modeling of stiff materials (Rigid: traditional rigid
body, ABD: Affine Body Dynamics, MPM: Material Point Methods, PBD: Position-based Dynamics). Contact:
collision handling method (Virtual: approximated contact, Penalty: penalty-based, IPC: Incremental Potential
Contact). RGB Signal: RGB tactile pattern generation method (Look-up: look-up tables, DNN: Deep Neural
Network, ✗: not supported). Robot: range of supported robotic systems. The last two columns report parallel
simulation capabilities (# Env: maximum number of parallel environments) and simulation speed relative to
real-time in a peg insertion simulation, with dual sensors in low/high resolutions, measured on an NVIDIA H100
80G GPU. Details are provided in Fig. 4.

Simulator Soft Mat. Stiff Mat. Contact RGB Signal Robot # Env Ò Sim Speed Ò

Taxim [43] - Rigid Virtual Look-up Sensor 1 -
DiffTactile [44] FEM MPM/PBD Penalty DNN Gripper 1 -

SAPIEN-IPC [48] FEM ABD IPC ✗ Gripper 256 / 4 0.81ˆ / 0.03ˆ

Taccel (Ours) FEM ABD IPC DNN Any 4096 / 64 18.30ˆ / 0.25ˆ

and detailed force distribution analysis [38, 44]. Soft-body simulations offer higher fidelity but face
significant computational challenges that limit their practical application in large-scale experiments.

An ideal VBTS simulator must simultaneously achieve:

• Precision: precise modeling of robots, sensors, and objects with physically valid solutions, particu-
larly maintaining inversion-free and intersection-free states during complex contact interactions;
generation of realistic tactile signals across multiple resolutions, from high-resolution RGB patterns
and depth maps to low-resolution marker movements.

• Scalability: Capability for large-scale parallel simulation for extensive data generation and algo-
rithm development.

• Flexibility: Support for diverse robotic platforms and sensor configurations, from parallel grippers
to multi-finger hands with varying sensor arrangements.

As detailed in Tab. 1, existing solutions often compromise on precision, scalability, or flexibility.
They typically produce suboptimal physics, operate slower than real-time with limited parallel
environments, or focus on specific sensor setups or simple grippers. These limitations significantly
impede the broader application of tactile robotics.

To address these challenges, we present Taccel, a high-performance simulation platform for scaling
up robots with VBTS-integration. Built on state-of-the-art simulation techniques (Sec. 3), Taccel
provides dedicated components for simulating robots (Sec. 4), tactile sensors (Sec. 5), and tactile
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signal generation (Sec. 6). Comprehensive evaluations (Sec. 7) demonstrate its effectiveness across
all objectives:

• Precision: Taccel leverages advanced solid material simulation techniques, combining IPC [30]
and ABD [29] to ensure physical accuracy. The platform models gel pads using neo-Hookean
solids with IPC guaranteeing inversion- and intersection-free contact solutions, while integrating
ABD for efficient and precise simulation of robot links and stiff objects. This combination enables
precise physics simulation and support realistic tactile signal generation.

• Scalability: With an efficient implementation of the ABD-IPC system using NVIDIA warp [39],
Taccel achieves unprecedented parallelization. On a single H100 GPU, it reaches over 900 FPS
(4096 environments, 18ˆ wallclock time) for a peg-insertion task with dual sensors and 12.67 FPS
(256 environments, 0.25ˆ wallclock time) for a dexterous manipulation scenario with full-hand
tactile sensing.

• Flexibility: Taccel provides user-friendly APIs for seamless integration of diverse robotic
platforms and sensor configurations. Users can easily load and configure robots through Unified
Robot Description Format (URDF) with auxiliary configurations, supporting applications from
simple grippers to complex manipulation tasks, like the mahjong tile sensing task in Fig. 1.

We validate Taccel through three fundamental tactile-informed robotic tasks (Sec. 8). In object
classification, models trained solely on Taccel’s synthetic tactile signals demonstrate strong gen-
eralization to real-world data without adaptation. In grasping experiments across four robotic hand
designs, we showcase the platform’s versatility in handling diverse robot configurations and tactile
signal types. In articulated object manipulation tasks, we demonstrate Taccel’s physical fidelity
through close correspondence between simulated and real-world robot behavior.

Our key contributions include: (i) development of a high-performance simulation platform combining
precise physics modeling, realistic tactile signal generation, and massive parallelization; (ii) imple-
mentation of user-friendly APIs enabling flexible robot-sensor integration and high-fidelity tactile
signal synthesis; (iii) comprehensive evaluation of the platform’s precision and scalability; and (iv)
extensive experimental validation across diverse tactile robotics applications. By enabling large-scale,
high-fidelity simulation of VBTS-equipped robots, Taccel aims to accelerate future research in
tactile robotics.

2 Related Work

2.1 Robot Tactile Sensors

Tactile sensing plays a fundamental role in precise manipulation, as established by neuroscientific
studies [52, 27, 26, 3]. This understanding has driven the development of artificial tactile sensing
systems for robots [41]. Among these, VBTSs have gained prominence by offering high-resolution
sensing with cost-effectiveness and operational simplicity [59, 51, 35, 33]. While these sensors have
advanced robotic manipulation [42, 38, 63], their development remains constrained by the reliance on
physical hardware experimentation. Taccel addresses this limitation by providing a comprehensive
simulation platform to accelerate research and development in tactile robotics.

2.2 Simulating VBTSs

Early VBTS simulators focused on normal deformation scenarios, approximating hyperelastic behav-
ior through geometric computations and surface modifications [17, 49, 54, 1, 43]. While efficient in
generating high-resolution tactile signals through physics-based rendering, these approaches inade-
quately capture elastomer dynamics during complex manipulation tasks, especially those involving
tangential forces and continuous interactions [63].

Recent approaches have achieved higher physical fidelity by incorporating advanced solid material
simulation techniques. Methods using Material Point Methods (MPM) [46, 21, 22] and Finite Element
Methods (FEM) [30, 29] better model elastomer properties through time-integrated deformation
computations [10, 8, 44, 12]. Notable improvements include the adoption of IPC [30] by several
simulators [12, 8], providing robust contact handling with guaranteed inversion- and intersection-free
solutions. Tab. 1 compares key features of representative approaches.
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Taccel builds on these advances by combining IPC and ABD in a unified platform, achieving both
physical accuracy and computational efficiency while supporting diverse robot configurations and
enabling large-scale parallel simulation for robot learning applications.

2.3 Tactile-Informed Robotic Tasks

Tactile sensing enhances robotic capabilities across three fundamental domains through precise
contact interaction measurements:

Perception Tactile feedback enables sophisticated object understanding through contact-based
sensing. Applications include shear and slip detection [60, 11], object classification and pose estima-
tion [32, 56, 47, 2], material property inference [18, 23], and interaction reconstruction [47, 58, 55].
These perceptual capabilities form the foundation for advanced manipulation algorithms.

Grasping Stable grasping requires precise control of contact forces to balance external loads [15,
45]. Tactile sensing provides direct force-torque feedback essential for diverse grasping strategies [37,
34, 57]. This tactile information complements vision-based approaches by enabling fine-grained
contact monitoring and in-hand adjustments [6, 5].

Manipulation Tactile feedback enables complex manipulation beyond basic pick-and-place opera-
tions. Applications include precision tasks like peg insertion [8], object pivoting [20], and articulated
object manipulation [64, 3]. Systems such as Tac-Man [63] and DoorBot [50] demonstrate how tactile
sensing guides contact geometry understanding and articulation control. This sensing modality is
particularly crucial for high-frequency object tracking during dexterous manipulation.

We validate Taccel’s capabilities through three representative applications: (i) multi-platform
robotic grasping with both rigid and soft objects, (ii) object classification using purely synthetic
training data with strong real-world transfer, and (iii) articulated object manipulation including
drawers, cabinets, and bolt-nut assembly tasks, extending the Tac-Man framework [63].

3 Unified IPC Simulation in Taccel

This section presents the unified IPC simulation framework in Taccel, detailing its mathematical
foundations and implementation principles. For complete derivations, we refer readers to the original
IPC [30] and ABD [29] works.

3.1 Problem Formulation and Soft Body Dynamics

We consider ns tetrahedralized soft bodies discretized into Ns vertices with positions x1,x2, ...,xNs

in Cartesian space. The system state is represented by the stacked position vector x“
rxT

1 ,x
T
2 , ...,x

T
Ns

sT PR
3Ns . Following Lagrangian mechanics, we express the system’s Lagrangian

as Lpx, 9xq “T px, 9xq´V pxq, where T px, 9xq “ 1
2

9xTM 9x represents kinetic energy with mass matrix

M PR
3Nsˆ3Ns . The potential energy V pxq comprises two terms: an elastic energy Φpxq utilizing the

Neo-Hookean constitutive model for hyperelastic materials (characterized by Young’s modulus E and
Poisson’s ratio ν), and external forces Eextpxq. The elastic energy is defined as Φpxq “

ş

Ω
Ψpxqdx,

where Ψpxq denotes elastic energy density over the volume region Ω of all objects in rest configura-
tion.

3.2 Time Stepping

Substituting Lpx, 9xq into the Euler-Lagrange equation BL
Bx px, 9xq´ d

dt
BL
Bx px, 9xq “ 0 yields the govern-

ing dynamics:

M:x“ ´
dV

dx
pxq. (1)

We temporally discretize Eq. (1) using backward Euler:

xn`1 ´xn

∆t
“ 9xn`1,

Mp 9xn`1 ´ 9xnq

∆t
“ ´

dV

dx
pxn`1q, (2)
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where time is discretized into steps ttn “n∆t :n PNu with step size ∆tą 0, and xn “xptnq. Under
this discretization, Eq. (1) can be formulated as:

d

dx
pEIPpxnqq “ 0. (3)

If we define the incremental potential energy of the constrained system as:

EIPpxq “
1

2
px´xn ´∆t 9xnqTMpx´xn ´∆t 9xnq`∆t2V pxq, (4)

then the general simulation problem in a conservative system can be reformulated as the minimization
problem:

xn`1 “ argmin
x

EIPpxq. (5)

3.3 Frictional Contact

We employ IPC [30] to handle contact interactions. The method operates on surface contact pairs
B, comprising point-triangle and edge-edge pairs from the surface meshes of soft and affine objects.
For each contact pair k PB with distance dk ą 0, IPC defines two key energy terms. First, a barrier
energy that prevents interpenetration:

bpdkpxqq “ ´
´

dk ´ d̂
¯2

logp
dk

d̂
qItdkPp0,d̂qupdkq, (6)

where d̂ą 0 is the distance threshold for contact force activation and Ip¨q is the indicator function.

Second, an approximated friction potential energy:

Dkpx,xnq “µλn
kf0p∥uk∥q, (7)

where xn represents the configuration at the previous timestep tn, λn
k is the magnitude of the lagged

normal contact force, and uk PR
2 denotes the tangential relative displacement in the local contact

frame. The friction transition function f0pxq “
şx

ϵv∆t
f1pyqdy`ϵv∆t uses:

f1pyq “

#

´ y2

ϵ2v∆t2
` 2y

ϵv∆t
, y P p0,∆tϵvq,

1, y ě∆tϵv,
(8)

where ϵv ą 0 serves as a velocity threshold distinguishing between static and dynamic friction regimes.
These contact and friction terms augment our incremental potential energy:

EIPCpxq “EIPpxq`∆t2Bpxq`∆t2Dpx,xnq, (9)

with Bpxq “κ
ř

kPB
Akbpdkpxqq, Dpx,xnq “

ř

kPB
Dkpx,xnq, where κą 0 controls contact stiffness.

3.4 ABD and Unified Simulation

For na affine bodies, we introduce a reduced coordinate space y PR
12na with an embedding map

ϕ :R12na ÑR
3Na that projects reduced coordinates to full-space vertices ϕpyq [29], where Na

denotes the total vertex count of affine bodies’ surface meshes. Each affine body uses 12 Degree of
Freedom (DoF): three for translation (R3) and nine for affine deformation (R3ˆ3).

T py, 9yq “
1

2
9xTM 9x“

1

2
9ϕpyqTM 9ϕpyq

“
1

2
pJ 9yqTMpJ 9yq “

1

2
9yT pJTMJq 9y“

1

2
9yTMy

9y,

(10)

where J“ Bϕ
By PR

3Naˆ12na is the Jacobian, M is the full-space mass matrix, and My “JTMJ is the

reduced-space mass matrix. The potential energy V pyq includes an As-Rigid-As-Possible (ARAP)
term Φypyq “Φxpϕpxqq with high stiffness κs to limit deformation, plus external forces Eextpyq.

Combining with Eq. (9), we obtain the unified affine-deformable coupled IPC energy [9] for the full
system state ty;xu PR

12na`3Ns :

EIPCpy;xq “EIPpxq`EIPpyq`∆t2Bpϕpyq;xq`∆t2Dpϕpyq;x, ϕpynq;xnq, (11)
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where EIPpyq is defined as:

EIPpyq “
1

2
py´yn ´∆t 9ynqTMypy´yn ´∆t 9ynq`∆t2V pyq. (12)

The next timestep’s configuration follows from minimizing this barrier-augmented incremental
potential:

yn`1;xn`1 “ argmin
y;x

EIPCpy;xq. (13)

3.5 Kinematic Constraints

We express kinematic constraints as Sxx“ sx and Syy“ sy, where Sx PR
cxˆ3Ns , sx PR

3Ns for

soft bodies, and Sy PR
cyˆ12na , sy PR

12na for affine bodies. To enforce these constraints, we employ
the Augmented Lagrangian method by augmenting EIPC to:

EAL
IPCpy;xq “EIPCpy;xq`}pSxx´sxqTλx}22 `}pSyy´syqTλy}22, (14)

where λx PR
cx and λy PR

cy are Lagrangian multipliers.

Optimizing EAL
IPCpy;xq yields the solution to the constrained system:

yn`1;xn`1 “ argmin
y;x

EIPCpy;xq, (15)

s.t. Sxx“ sx and Syy“ sy. (16)

4 Robot and VBTS Simulation in Taccel

Building upon our unified simulation framework, Taccel implements robot and VBTS simulation
through a modular design that leverages the complementary strengths of affine and soft-body dy-
namics. Robot links are efficiently modeled as affine bodies to capture their primarily rigid motion,
while VBTSs are simulated as soft bodies to accurately represent their deformation mechanics. This
natural division allows Taccel to balance computational efficiency with physical accuracy while
maintaining consistent contact handling through IPC.

Robot Modeling For a robot with D-DoF, L links, and N integrated vision-based tactile sensors
(VBTSs), Taccel constructs its kinematic model from a URDF specification, loading visual and
collision meshes as affine bodies (Sec. 3.4). Given the robot’s global transformation Tr and joint
configuration q PQ, the transformation of each link j in the world frame, r

lj
T pqq, is computed via

forward kinematics.

Tactile Sensors Modeling Each VBTS is represented by a tetrahedral mesh as a soft volumetric
body (Sec. 3), with attachment specifications to its corresponding robot link. For the i-th sensor’s

gel pad Gi attached to link lj with local transformation
lj
Gi
T , we denote its outer surface as Si “ BG.

The surface comprises a reflective-coated region B`Gi and a sensor-attached region B´G. Within

B`Gi, mi markers are positioned at locations GiPi “ tp
piq
k PR

3, k “ 1, . . . ,miu
N
i“1, each defined by

barycentric coordinates in its triangle:

p
piq
k “

3
ÿ

u“1

αux
pi,kq
u , where

3
ÿ

u“1

αu “ 1, αu P r0, 1s. (17)

Robot-Sensor Simulation Scene initialization computes affine states through forward kinematics
for robot links and explicit specification for stiff objects. Gel pad node positions are transformed to
the world frame, with all states written to x and y and velocities 9x, 9y initialized to zero. Robot actions
are implemented through kinematic constraints (Eq. (15)). From joint space targets, we compute
affine state targets for links and node position targets for gel pad attached surfaces B´G, assembled
into vectors sx, sy. Selection matrices Sx,Sy apply these constraints (Eq. (16)), with remaining
states solved via time stepping (Sec. 3.2).
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5 Tactile Signal Simulation in Taccel

Contact interactions during simulation cause gel pad deformation, transforming the coated surface

B`G to B`G̃ and marker positions to P̃i. These deformed quantities serve as the foundation for
generating multiple types of tactile signals, each suited for different robotic applications.

5.1 High-resolution Signals

High-resolution tactile signals, including RGB images and depth maps, are essential when fine-
grained details like object texture and local geometries are required. While many works directly
use the object geometry in the contact region as a depth map for efficiency [49], this approach can
lead to inauthentic signals in dynamic scenarios. Instead, Taccel supports accurate simulation
of high-resolution soft volumetric bodies to fully capture the fine-grained contact and deformation
patterns.

The signal generation process proceeds in two stages. First, we extract the depth and normal maps

dpu,vq, npu,vq for pixel coordinates pu, vq from the deformed coated surface B`G̃. Next, follow-
ing the method of Si et al. [44], we apply a Deep Neural Network (DNN) to generate RGB
tactile signals from the depth information. Specifically, for each pixel coordinate pu, vq, a pixel-
to-pixel DNN parameterized by θ maps the inputs to the pixel color relative to a reference image:
fθ

`

γpu, vq, npu,vq

˘

ÞÑ∆σpu,vq. The result is added to a reference image (the RGB signal when the

gel pad has no deformation) to obtain the final RGB image. Here, γp¨, ¨q provides the 2D positional
encoding of the pixel coordinate. The model is trained on patches from 200 real robot tactile images
and their corresponding depth map annotations via the pin-pressing procedure [59, 44].

We demonstrate Taccel’s capability to scale up synthetic data generation of high-resolution tactile
signals through robotic grasping simulations and explore downstream object recognition model
learning in Secs. 8.1 and 8.2.

5.2 Low-resolution signals

Low-resolution tactile signals primarily track marker positions and their movements. The deformed
markers can be tracked by computing their new positions throughout the simulation (at time step t):

p̃
piq
k ptq “

3
ÿ

u“1

αux̃
pi,kq
u ptq, (18)

and projecting them on the tactile image. The marker flows, representing local deformation patterns,
are then computed as:

∆Pi “ tp̃
piq
k ´p

piq
k u “ t∆p

piq
k u. (19)

5.3 Tactile Signals in 3D

The depth map and marker positions can be transformed into a dense or sparse 3D point cloud in
the world frame using robot kinematics and sensor configurations. These 3D tactile signals provide
crucial spatial information for robotic manipulation tasks. We demonstrate their effectiveness through
the simulation of Tac-Man framework [63] in Sec. 8.3.

6 API Designs in Taccel

Taccel provides intuitive Python APIs designed to make tactile robotics simulation accessible
to researchers while maintaining high performance through NVIDIA Warp [39] GPU acceleration.
The APIs allows for seamless loading of robots from URDF files with automatic parsing, sensor
configurations from auxiliary files, and objects from mesh files. Users can efficiently reset simulation
states or setting kinematic targets to control the robots in familiar formats (NumPy arrays, PyTorch
tensors). Further, Taccel’s architecture supports parallel simulation of multiple environments,
isolated via unique environment IDs.

7



Wrong collision Wrong collision 29K nodes (bolt and nut) 6K nodes (bolt and nut)

Penetration

≈64 envs / ≈4 envs >4096 envs / >256 envsInaccurate physics with rigid sim

PyBullet

(a) a bolt-and-nut test

(b) a soft block pressing test

(d) a multi-environment parallellization test (low-res / high-res)

SAPIEN Taccel (Ours) w/o ABD Taccel (Ours)

DifTactile SAPIEN-IPC Taccel (Ours)

(c) an articulated object manipulation task

#switch error > 600% #switch error = 1.1%

Isaac Sim Implementation

Taccel (Ours)

Taccel (Ours)

Accurate physics with soft body sim

Penetration-free

Figure 2: Comprehensive evaluation of physics simulation capabilities across VBTS simulators. The
comparison spans four challenging scenarios: (a) a bolt-and-nut assembly requiring precise contact handling
between non-convex stiff objects, where PyBullet and SAPIEN exhibit collision resolution failures while our full
method achieves stable simulation with just 6K nodes compared to 25K nodes without ABD; (b) a soft block
pressing test demonstrating contact handling between deformable bodies, where DiffTacile shows penetration
artifacts while our method maintains penetration-free interactions; (c) an articulated object manipulation task
integrating robot control, tactile sensing, and object interaction, where Isaac Sim’s rigid body approach produces
physically inaccurate results while our method achieves precise soft-body simulation with physical error around
1%; and (d) a parallel environment test using peg insertion tasks, demonstrating our method’s superior scaling
capability with over 4096 concurrent environments compared to SAPIEN-IPC’s 64 environments, representing a
64-fold improvement in simulation throughput.

To foster community development, we will release Taccel and maintain active collaboration with
researchers to incorporate feedback, add features, and expand capabilities, ensuring its evolution as a
comprehensive tool for tactile robotics research.

7 Performance Evaluation of Taccel

We evaluate Taccel through comprehensive benchmarks focusing on simulation precision, tactile
signal fidelity, and computational efficiency. Our analysis demonstrates that the combination of ABD
and IPC provides significant advantages over existing approaches (Sec. 7.1), generates high-quality
tactile signals (Sec. 7.2), and enables efficient scaling (Sec. 7.3).

7.1 Physics Simulation Performances

As illustrated in Fig. 2, Taccel achieves superior precision and efficiency through its unified ABD
and IPC framework, demonstrated across three challenging scenarios.

First, the bolt screwing task (Fig. 2a) demonstrates Taccel’s ability to handle complex physical
interactions between highly non-convex objects, where conventional simulators including PyBullet
and SAPIEN [53] fail to handle. This capability stems from our ABD formulation, which provides
an efficient approach to simulating dense rigid-soft body interactions. Alternative approaches either
model stiff objects as soft bodies, introducing excessive DoFs and computational overhead (Fig. 2a,
ours w/o ABD), or rely on RBD [14], which requires expensive nonlinear Continuous Collision
Detection (CCD) calculations to maintain intersection-free configurations, significantly degrading
performance.

Next, physical realism in Taccel is demonstrated through the soft block pressing scenario (Fig. 2b),
where our collision-free and intersection-free guarantees produce notably more realistic deformations
compared to penalty-based approaches. This precision extends to practical robotics applications, as
shown in the Tac-Man microwave manipulation task (Fig. 2c). Here, Taccel’s accurate contact
force solving enables faithful reproduction of gel pad-object handle interactions, closely matching
real-world execution patterns (detailed analysis in Sec. 8.3).

8



Finally, the computational efficiency of Taccel emerges from our optimized implementation of
the ABD and IPC algorithms, enabling unprecedented scaling capabilities. In a peg insertion task,
Taccel achieves parallel simulation of over 4096 environments on a single GPU with 80GB
VRAM—representing a 64-fold improvement over SAPIEN-IPC [48, 8]. This performance gain
opens new possibilities for large-scale robotics simulation and learning; see also comprehensive
scaling analysis in Sec. 7.3.

7.2 Tactile Signal Simulation

We conducted systematic experiments to evaluate the fidelity of tactile signals generated by Taccel.
Our experimental setup consisted of a calibrated GelSight-type sensor mounted on a vertical rack for
precise movement control (Fig. 3).

The evaluation followed a controlled procedure in both real-world and simulated environments.
For real-world data collection, 3D-printed objects were fixed beneath the sensor, which applied
consistent pressure while recording RGB camera images. Depth maps were extracted using Yuan et
al.’s method [59]. We then replicated this pressing sequence in Taccel using a high-resolution soft
body gel pad (maximal cell volume Vmax « 10´12m3) to ensure signal fidelity.

We evaluated the simulation accuracy using 18 objects from a standard tactile shape testing
dataset [16]. The qualitative and quantitative comparisons shown in Fig. 3 demonstrate Taccel’s
ability to produce highly realistic tactile patterns, achieving an average SSIM of 0.93 across all test
objects. Minor variations between simulated and real signals primarily stem from manufacturing
tolerances in the 3D-printed objects and challenges in precise camera calibration. Despite these
practical limitations, the results establish Taccel’s capability to generate high-fidelity tactile signals
suitable for VBTSs, with simulated patterns closely matching experimental measurements.

7.3 Multi-environment Simulation

Efficient and stable parallel simulation of multiple environments is crucial for scaling up synthetic
data collection across diverse downstream tasks. To evaluate Taccel’s capabilities in this regard,
we designed three test cases of increasing complexity. First, we implemented a peg-insertion task
adapted from SAPIEN-IPC [8, 48], where two gel pads (139 nodes and 317 cells each) follow a
scripted trajectory to squeeze the peg around the hold. Next, we scaled this task to a higher resolution,
increasing each gel pad to 1,533 nodes and 5,360 cells. Finally, to demonstrate Taccel’s potential
for advanced tactile sensing research, we created a scripted grasping task using a customized five-
fingered dexterous hand equipped with 17 gel pads covering the entire hand, totaling 5,157 nodes and
14,311 cells.

Using a single NVIDIA H100 80G GPU, we benchmarked Taccel against SAPIEN-IPC. The
results in Fig. 4 showcase Taccel’s superior performance: in the low-resolution peg-insertion task,
Taccel achieves 915 FPS (18.30ˆ faster than wallclock time) while managing over 4096 parallel
environments—a 16-fold improvement over the baseline using the same GPU memory, enabled by
our efficient parallelization implementation. The high-resolution test further demonstrates Taccel’s
advantages, maintaining both stability and precision while consistently outperforming the baseline.
Even in the complex dexterous hand scenario, Taccel efficiently handles full-hand tactile sensing,
achieving 12.67 FPS across 256 environments. We observed that SAPIEN-IPC’s use of FP32 precision
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Figure 3: Quantitative and qualitative evaluation of tactile signal fidelity between real and simulated
sensors. The experimental setup (upper left) shows a GelSight-type sensor mounted on a vertical testing rack
for controlled contact measurements. Statistical analysis of simulation accuracy is presented as a violin plot
(upper right) showing the distribution of SSIM scores between real and simulated tactile patterns. Representative
examples (lower portion) display paired comparisons of real-world (top row) and simulated (bottom row) tactile
signals across four different contact scenarios, demonstrating the high-fidelity reproduction of surface features in
both RGB patterns and depth maps.
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Figure 4: Parallel simulation performance analysis across environment scaling. The plot compares frames
per second (FPS) achieved by Taccel (FP64) and SAPIEN-IPC (FP32) on an NVIDIA H100 80G GPU
for both peg insertion and dexterous hand manipulation tasks. The dashed line indicates real-world clock
time (∆t“ 0.02s), while red circles mark cases where projected Newton steps failed to converge within the
optimization time limit. Our method demonstrates superior scaling efficiency, maintaining performance even at
4096 parallel environments.
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Figure 5: Object classification pipeline using synthetic tactile data generated from Taccel. Top: Set of
10 mechanical parts (bolts, nuts, and other hardware components) used in our experiments, featuring diverse
geometric characteristics. Bottom left: Comparison between simulated and real-world GelSight tactile sensor
readings during grasping, demonstrating the fidelity of our synthetic data generation. Each pair shows the
RGB image and corresponding depth map captured by the tactile sensor. Bottom right: Classification network
architecture.

leads to convergence issues when solving contact forces in Eq. (6), particularly in the logarithmic
barrier energy term calculations, as indicated by red outlines in Fig. 4.

8 Applications in Tactile Robotics

We demonstrate Taccel’s capabilities across three tactile-informed robotic tasks: training object
classification models with synthetic data (Sec. 8.1), generating a large-scale dataset through parallel
grasp simulations (Sec. 8.2), and manipulating articulated objects (Sec. 8.3). These applications show-
case how our framework enables precise robotic simulation and scalable synthetic data generation.

8.1 Learning object classification Models

To demonstrate Taccel’s ability to generate synthetic training data that generalizes to real-world
scenarios, we developed a tactile-based object classification system. As shown in Fig. 5, our approach
trains a DNN to classify objects using high-resolution tactile signals obtained from single grasp trials.

Following Yang et al. [56], we selected 10 mechanical parts with distinct fine-grained geometries
(illustrated in Fig. 5, top). For each object, we simulated 200 grasp trials using a parallel gripper with
randomized grasping poses. The depth maps dpu,vq extracted from these simulated tactile signals
yielded approximately 4,000 training samples. To enhance dataset robustness, we augmented the
depth maps through random affine transformations, morphological operations (erosion and dilation),
and Gaussian filtering. We then trained a ResNet-18 model [19] for 10-category object classification
using these depth images.

For real-world validation, we collected tactile signals using a RobotiQ-2F85 parallel gripper equipped
with GelSight-type sensors. The test objects were 3D printed at 0.2mm layer height to maintain high
geometric fidelity. We gathered 16 images per object and applied random affine transformations for
augmentation before evaluating the trained network’s classification performance.
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(a) simulated 2D tactile signals

(b) simulated 3D tactile signal

Figure 6: Examples of the synthesized grasps from MultiDex-Tac and the simulated tactile signals in 2D
and 3D. Diverse grasping configurations are synthesized and simulated for different objects. The corresponding
tactile feedback (bottom row) represented as both 2D pressure maps (colored visualizations) and 3D deformation
patterns of the tactile sensor surface are synthesized.

As shown in Tab. 2, our model achieved 86.50% accuracy on the synthetic test set and 70.94% on real-
world samples without any domain adaptation. This modest sim-to-real gap demonstrates Taccel’s
capability to generate precise tactile signals that enable data-efficient training of transferable tactile
perception models.

Table 2: Object classification and sim-to-real performance on the mechanical parts object group. Per-
formance metrics include number of tactile sensors (N ), Degree of Freedom (DoF), total sensing area (S.A.),
average sensor-object contact area (C.A.) with percentage of total sensing area in parentheses, and classification
accuracy (Acc.). Results compare synthetic and real-world data for mechanical parts classification.

Data DoF N S.A. / cm2 C.A. / cm2 Acc. Ò

Mech. 2 2 32.0 4.77 (14.92%) 86.50%
Mech. (Real) 2 2 32.0 5.69 (17.78%) 70.94%

Table 3: Object classification performance across different robotic hand configurations. The abbreviations
follows Tab. 2. Results compare performance across different robotic hand designs, including parallel gripper,
Robotiq-3F, Allegro Hand, and the F-TAC hand.

Data DoF N S.A. / cm2 C.A. / cm2 Acc. Ò

Gripper 2 2 32.0 5.05 (15.78%) 44.56%
Robotiq-3F 8 3 27.0 4.98 (18.43%) 44.61%

Allegro 16 4 23.0 7.67 (33.34%) 54.30%
F-TAC [62] 15 17 59.7 4.00 (6.700%) 42.54%

8.2 Robotic Grasping with Tactile Sensors

We investigate robotic grasping across different hand configurations with varying tactile sensor
arrangements. By extending the DFC algorithm [37], we first generate contact-oriented grasping
poses for four robotic hands, then simulate their tactile responses within Taccel, as illustrated in
Fig. 6. Our key modification to the DFC algorithm promotes perpendicular contact between gel pads
and object surfaces, optimizing for downstream tasks that rely on tactile perception.

Following Liu et al. [37], we synthesize grasping poses in the robot’s joint space q PQ relative to the
object frame by minimizing a modified Gibbs energy:

EpO, q, T q “EDFC `λcontactEcontactpO, q, T q. (20)

The force-closure term EDFC maintains its original formulation [37], with added constraints to
ensure gel pad penetration depth ϵ (typically 0.5mm). We introduce a new contact term Econtact
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that aligns the normals of gel pad contacts ci P B`Gi with their corresponding object surface normals
oi “ argminoPBO }o´ci}:

EcontactpO, q, T q “ 1´
〈

cK
i , o

K
i

〉

, (21)

where p¨qK represents the surface normals of the gel pad and object surfaces.

We evaluated this approach on 10 diverse objects from ContactDB [4], YCB [7], and adversarial
object [40] datasets. For each object, we generated grasps using 4 different robotic hands, producing
approximately 14k total grasps. These were simulated in Taccel to generate tactile signals, with
key metrics summarized in Tab. 2, including sensor count, robot DoF, sensing areas, and average
contact ratios.

We release this synthetic data as MultiDex-Tac, extending the MultiDex dataset [31] with tactile
perception capabilities. This dataset can be further expanded with additional robotic hands and
objects, serving as a foundation for various robotic tasks. To demonstrate its utility, we implemented
the object classification pipeline described in Sec. 8.1, adapting it to use the deformed coat’s point
cloud as input and PointNet as the feature extractor. The classification performance across different
hand configurations is reported in Tab. 2.

Our analysis reveals an interesting trade-off: while robots differ in sensor count and sensing area,
higher dexterity (as in the Allegro hand with more DoFs along different axes) enables better ob-
ject contact despite fewer sensors. This enhanced contact leads to superior classification accuracy,
highlighting the balance between sensor count and dexterity in tactile hand design. These findings
demonstrate Taccel’s value in validating robotic hand designs before physical fabrication.

8.3 Articulated Object Manipulation

We consider articulated object manipulation, a challenging task where tactile perception provides
critical feedback on hand-object contact, informing object articulation and guiding robot actions [25,
63]. In the Tac-Man framework [63], the system alternates between execution and recovery phases.
During execution, the system performs coarse manipulation actions (e.g., pulling backward) to
gradually move the articulated object part. When the actual motion deviates from intended trajectories
due to articulation constraints, the gel pad deforms, creating contact deviation reflected in marker flow
magnitudes. Once these flows exceed threshold δ0, the system enters recovery mode to restore stable
contact by reducing deviation, before resuming execution. This execution-recovery cycle typically
requires tens of iterations for finishing manipulation.

Tac-Man’s effectiveness relies heavily on gel pad deformation for motion adaptation and tactile
feedback. While the original implementation by Zhao et al. used rigid body simulation with gripper
compliance approximations, it couldn’t authentically replicate gel pad deformation, contact dynamics,
and tactile feedback, resulting in significant sim-to-real gaps during large-scale verification.

Taccel overcomes these limitations through accurate simulation of sensor-object contact and gel
pad deformation. We validated our approach on three types of articulated objects: drawers with
prismatic joints, cabinets with revolute joints, and bolt-nut pairs with helical joints. For drawers
and cabinets, we randomly sampled joint positions. The manipulation sequences and corresponding
tactile signals are presented in Fig. 7 (top row).

To evaluate sim-to-real correspondence, we compared our simulation against real-world Tac-Man
execution using a microwave (revolute joint) and drawer (prismatic joint), shown in Fig. 7’s middle
and bottom rows. We manually created URDF models to match real-world geometries and kinemat-
ics, maintaining identical initial grasping poses across simulation and physical setups. Following
Tac-Man’s implementation, we set δ0 “ 0.4mm and α“ 0.6. For comprehensive comparison, we
also tested Tac-Man’s official implementation on these objects. As demonstrated in Fig. 7, Taccel
faithfully reproduces real-world execution patterns, with execution-recovery switch counts averaging
68.75 and 0.0 for revolute and prismatic settings respectively—remarkably matching real-world obser-
vations. While Isaac Sim successfully simulated the manipulation process, its dynamics gap resulted
in substantially higher switch counts. These results highlight Taccel’s capability to authentically
replicate physical interactions in precise manipulation scenarios.
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(b) comparisons among real-world execution, Isaac Sim simulation, and Taccel simulation
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Figure 7: Tac-Man manipulation simulation. (a) Demonstration of Tac-Man’s execution-recovery cycles on
three articulated objects: a drawer (prismatic joint), cabinet (revolute joint), and bolt-nut assembly (helical joint).
Black dots indicate marker positions, with purple lines showing marker flow (8x magnified). (b) Three-way
comparison between real-world execution (left), Isaac Sim implementation [63] (middle), and our Taccel sim-
ulation (right). The execution-recovery switch counts (#switch) demonstrate Taccel’s accuracy in replicating
real-world behavior, with values closely matching physical experiments compared to Isaac Sim’s higher counts.
Tactile feedback visualizations (bottom right) show marker positions and flows during execution and recovery
phases.

9 Summary

We present Taccel, a flexible and high-performance physics simulator designed for diverse robots
with VBTS integration. Through user-friendly APIs, it enables precise and efficient simulation
of complex tactile robotic tasks while generating realistic tactile signals. The simulator excels in
capturing intricate deformation and contact dynamics of soft gel pads with unprecedented stability,
while supporting parallel environments at over 900 FPS with thousands of concurrent simulations.
These capabilities position Taccel as a powerful tool for validating hand designs and sensor
configurations before fabrication, potentially reducing development time and costs.

Limitations The computational demands of large-scale simulation remain challenging for Taccel.
One main bottleneck is the PCG-based linear system solving in Newton iterations, which we will
further optimize. Additional optimization strategies include carefully relaxing convergence tolerance
of solvers or simplifing simulation protocols to enhance efficiency. Faster speed can also be achieved
with larger timesteps (enabled by IPC’s unconditionally stable solver) and relaxed solver tolerances.
Additionally, while Taccel excels at physics simulation, it currently lacks real-time rendering
capabilities and a graphical user interface. Developing Taccel into an IsaacGym-like comprehensive
simulation platform would require substantial additional engineering effort.
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